Concours commun I.N.A et E.N.S.A

MATIÈRES A OPTION

Option générale

Mathématiques, Sciences physiques, Biologie

Durée: 3 heures

MATHÉMATIQUES

Corrigé

Partie I

- **1.** Pour tout $s \in [-1,1]$ et tout $k \in \mathbb{N}$, on a $|p_k s^k| \le p_k$. La série $\sum_{k=0}^n p_k$ converge, et sa somme vaut 1. Le théorème de comparaison des séries à termes positifs nous permet d'affirmer que la série $\sum p_k s^k$ converge absolument.
- (a) Par définition $g(0) = p_0$ ($0^0 = 1$) et $g(1) = \sum_{k=0}^{\infty} p_k = 1$ (il s'agit d'une loi de probabilité).

 - (b) Si X est une variable de Bernoulli, alors $\forall s \in \mathbb{R}, g_X(s) = 1 p + ps$. (c) On a $Y(\Omega) = \mathbb{N}$ et $\forall k \in \mathbb{N}, p(Y = k) = e^{-\lambda} \frac{\lambda^k}{k!}$. D'où, pour tout $s \in [-1, 1], g_Y(s) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} s^k = 1$
- 3. Pour tout $s \in [-1,1] \setminus \{0\}$, on a $|v_k| = |kp_k s^{k-1} \le \frac{1}{|s|} p_k |s|^k$ et la série $\sum_{k \in \mathbb{N}^*} p_k |s|^k$ converge. Donc $\sum_{k \in \mathbb{N}} v_k$ converge absolument. La série $\sum_{k\in\mathbb{N}}v_k$ converge absolument pour s=0.

De même, si $s \in [-1,1] \setminus \{0\}$ on a $|w_k| = k(k-1)p_k s^{k-2} \le \frac{1}{|s|^2} p_k |s|^k$ et la série $\sum_{k \in \mathbb{N}^*} p_k |s|^k$ converge. Donc

 $\sum_{k\in\mathbb{N}}v_k$ converge absolument. La série $\sum_{k\in\mathbb{N}}v_k$ converge absolument pour s=0.

4. On a $g'(1) = \sum_{k=0}^{\infty} kp_k = E(X)$ et $g''(1) + g'(1) - g'(1)^2 = V(X)$.

Pour la loi de Bernoulli, on a $G_X(s)=1-p+ps$, $G_X'(s)=p$ et $G_X''(s)=0$. D'où E(X)=p et $V(X)=p-p^2=p(1-p)$.

5. Soit $k \in \mathbb{N}$, on a $(Z = k) = \bigcup_{i=0}^{\kappa} (X = i, Y = k - i)$ (réunion disjointe). D'où :

$$p(Z=k) = \sum_{i=0}^{k} p(X=i, Y=k-i)$$

$$= \sum_{i=0}^{k} p(X=i)p(Y=k-i) \quad (X \text{ et } Y \text{ sont indépendantes })$$

Donc, pour $s \in [-1, 1]$, on obtient :

$$h(s) = \sum_{k=0}^{\infty} p(Z=k)s^k$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} p(X=i)p(Y=k-i)\right)s^k$$

$$= \sum_{i=0}^{\infty} p(X=i)s^i \sum_{k=i}^{\infty} p(Y=k-i)s^{k-i}$$

$$= \sum_{i=0}^{\infty} p(X=i)s^i \sum_{l=0}^{\infty} p(Y=l)s^l$$

$$= f(s) \times g(s)$$

6. Pour $n \in \mathbb{N}^*$, on note G_{Z_n} la fonction génératrice de Z_n . Montrons que $G_{Z_n} = g^n$. En effet, d'après ce qui précède, la propriété est vraie pour n = 2. Supposons la vraie pour n. On a alors, pour tout $s \in [-1, 1]$:

$$G_{Z_{n+1}}(s) = G_{Z_n + X_{n+1}}(s) = G_{Z_n}(s) \times g(s) = g^n(s) \times g(s) = g^n(s).$$

Et la propriété est vrai pour n+1. La propriété est donc vraie pour tout $n \in \mathbb{N}^*$.

Si X suit une loi binomiale de paramètres n et p, alors X peut être considérée comme somme de n variable aléatoires $X_1, X_2, ..., X_n$ de Bernoulli et indépendantes. D'où, d'après ce qui précède, pour tout $s \in \mathbb{R}$,

$$g(s) = f^{n}(s) = (1 - p + sp)^{n}.$$

Partie II

- 1. (a) Par définition, $\forall s \in [-1, 1], g(s) = \sum_{k=0}^{\infty} p(\xi_1 = k) s^k$. Donc $|g(s)| \le \sum_{k=0}^{\infty} p(\xi_1 = k) |s|^k \le \sum_{k=0}^{\infty} p(\xi_1 = k) = 1$. D'où $g(s) \in [-1, 1]$.
 - (b) X_1 et ξ_1 ont même loi, donc même fonction génératrice. D'où $g_1 = g$.
 - (c) Notons $S_n = \sum_{i=1}^n \xi_i$. D'après ce qui précède, la fonction génératrice de S_n est g^n . On remarque que

$$X_{n+1}=\sum_{i=1}^j \xi_i=\sum_{i=1}^{X_n} \xi_i=S_{X_n}.$$
 Soit maintenant $k\in X_{n+1}(\Omega)$, on a :

$$p(X_{n+1} = k) = \sum_{j \in X_n(\Omega)} p(S_{X_n} = k, X_n = j)$$

$$= \sum_{j \in X_n(\Omega)} p(S_{X_n} = k/X_{n-j}) p(X_n = j)$$

$$= \sum_{j \in X_n(\Omega)} p(S_j = k) p(X_n = j)$$

D'où

$$g_{n+1}(s) = \sum_{k=0}^{\infty} \left(\sum_{j \in X_n(\Omega)} p(S_j = k) p(X_n = j) \right) s^k$$

$$= \sum_{j \in X_n(\Omega)}^{\infty} p(X_n = j) \left(\sum_{k=0}^{\infty} p(S_j = k) s^k \right)$$

$$= \sum_{j \in X_n(\Omega)}^{\infty} p(X_n = j) \left(g(s)^j \right)$$

$$= g_n(g(s))$$

$$= g^{(n+1)}(s)$$

Donc on peut conclure par le principe de récurrence.

2. • Montrons par récurrence sur $n\mathbb{N}^*$ que $E(X_n)=m^n$. La propriété est vraie pour n=1 puisque $E(X_1)=E(\xi_1)=m$. Supposons la propriété vraie à l'ordre n. On a :

$$E(X_{n+1}) = g'_{(n+1)}(1) = (g \circ g_n)'(1) = g'(g_n(1)) \times g'_n(1) = E(X_1) \times E(X_n) = m^{n+1}.$$

D'où, $\forall n \in \mathbb{N}^*, E(X_n) = m^n$.

• On a $V(X_1) = \sigma^2$. Supposons $V(X_n) = \sigma^2 m^{n-1} (1 + m + ... + m^{n-1})$ pour $n \in \mathbb{N}^*$ et montrons la propriété pour n+1. En effet, on sait que $V(X_{n+1}) = g''_{n+1}(1) + g'_{n+1}(1) - \left(g'_{n+1}\right)^2$. D'autre part, pour tout $t \in]-1,1[$, $g'_{n+1}(t) = g'(g_n(t)) \times g'_n(t)$ et

$$g_{n+1}''(t) = g''(g_n(t)) \times (g_n'(t))^2 + g'(g_n(t)) \times g_n''(t)$$

D'où:

$$V(X_{n+1}) = g''_{n+1}(1) + g'_{n+1}(1) - (g'_{n+1}(1))^{2}$$

$$= g''(1) \times (g'_{n}(1))^{2} + g'(1) \times g''_{n}(1) + g'_{n+1}(1) - (g'_{n+1}(1))^{2}$$

$$= (\sigma^{2} - m + m^{2}) m^{2n} + m(V(X_{n}) - m^{n} + m^{2n}) + m^{n+1} - m^{2(n+1)}$$

$$= (\sigma^{2} - m + m^{2}) m^{2n} + m(\sigma^{2} m^{n-1}(1 + m + \dots + m^{n-1}) - m^{n} + m^{2n}) + m^{n+1} - m^{2(n+1)}$$

$$= \sigma^{2} m^{n} (1 + m + \dots + m^{n-1} + m^{n}).$$

• On a $V(X_n) = \sigma^2 m^{n-1} \frac{m^n - 1}{m - 1}$. Donc $V(X_n)$ décroit lorsque n croit.

Partie III

1. La série entière $\sum_{k\in\mathbb{N}} p_k s^k$ ayant un rayon de convergence supérieur où égal à 1, on a $\forall s\in[0,1[,g'(s)=0])$

$$\sum_{k=1}^{\infty} k p_k s^{k-1} \text{ et } g''(s) = \sum_{k=2}^{\infty} k(k-1) p_k s^{k-2}.$$

Comme $0 < p_0 < 1$ (par hypothèse et comme les p_k sont des probabilités), on a l'existence de $k_0 > 0$ tel que $p_{k_0} > 0$.

 $Ainsi: \forall s \in]0,1[$

$$g'(s) = \sum_{k=1}^{\infty} k p_k s^{k-1} \ge k_0 p_{k_0} s^{k_0 - 1} > 0$$

Donc, par la caractérisation par dérivée, g est strictement croissante sur]0,1[. De même $\forall s \in]0,1[$,

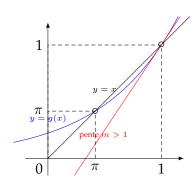
$$g''(s) = \sum_{k=2}^{\infty} k(k-1)p_k s^{k-2} \ge k_0(k_0 - 1)p_{k_0} s^{k_0 - 2} \ge 0$$

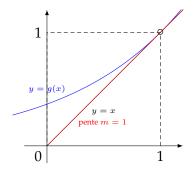
Donc, par la caractérisation par dérivée, g' est croissante sur [0,1[.

Si $p_0 + p_1 = 1$, alors (comme les p_k sont des probabilités) $g(s) = p_0 + p_1 s$ est affine donc n'est pas strictement convexe.

Sinon, $p_0 + p_1 < 1$, alors il existe $k_0 > 1$ tel que $p_{k_0} > 0$ (car les p_k sont des probabilités) et g'' > 0 (car $k_0 - 1 > 0$) sur [0, 1[, d'où la stricte monotonie de g sur [0, 1[.

- **2.** (a) Soit $\varphi(s) = g(s) s$ pour $s \in [0, 1[$. On a $\varphi'(s) = g'(s) 1 < g'(1) 1 = m 1 < 0$. Donc φ est strictement décroissante sur [0, 1[, donc $\varphi(s) > \varphi(1) = 0$. D'où $\forall s \in [0, 1[$, g(s) > s.
 - (b) Si m > 1, alors $\varphi'(1) = m 1 > 0$ et $\varphi'(0) = g(0) 1 = p_0 1 < 0$. Donc, d'après le théorème des valeurs intermédiaires, il existe $q \in [0, 1]$ tel que $\varphi(q) = 0$ ou encore g(q) = q.
 - (c) L'allure de courbe représentative de la restriction de g sur l'intervalle [0,1] dans les m<1, m=1 et m>1.





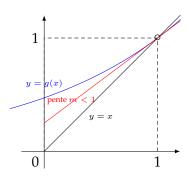


FIGURE 1 – Cas m > 1.

FIGURE 2 – Cas m=1 avec $p_0+p_1 <$

FIGURE 3 – Cas m < 1.

3. Comme $X_n=0$ implique $X_{n+1}=0$, alors la suite des événements $(X_n=0)_{n\in\mathbb{N}^*}$ est croissante et comme $\{\exists r,r\geq 1\mid X_r=0\}=\bigcup_{n\in\mathbb{N}^*}(X_n=0)$, alors

$$\lim_{n \to \infty} p(X_n = 0) = p\left(\bigcup_{n \in \mathbb{N}^*} (X_n = 0)\right) = p\left(\{\exists r, r \ge 1 \mid X_r = 0\}\right).$$

Mais on a aussi

$$\bigcup_{n\in\mathbb{N}^*} (X_n = 0) = \bigcup_{n\in\mathbb{N}^*} \left(\bigcup_{p=1}^n (X_p = 0) \right)$$

D'où
$$\lim_{n\to\infty} p(X_n=0) = p\left(\bigcup_{n\in\mathbb{N}^*} \left(\bigcup_{p=1}^n (X_p=0)\right)\right) = \lim_{n\to\infty} \bigcup_{p=1}^n (X_p=0) = \lim_{n\to\infty} p\left\{\exists r, 1\leq r\leq n\mid X_r=0\right\}.$$

- **4.** Par définition $g_n(0) = \sum_{n=0}^{\infty} p(X_n = 0)s^0 = p(X_n = 0)$.
- 5. (a) L'événement $X_n = 0$ entraîne l'événement $X_{n+1} = 0$, donc $u_n \le u_{n+1}$. La suite (x_n) est croissante, majorée par 1 (ce sont des probabilités), donc converge. Or $u_{n+1} = g_{X_{n+1}}(0) = g^{n+1}(0) = g(g^n(0)) = g(u_n)$.

Lorsque n tend vers $+\infty$, (u_n) tend vers q l'unique point fixe de g. (u_n) tend aussi vers q. La fonction g étant continue en p, $(g(u_n))$ tend vers g(q). Or $u_{n+1} = g(u_n)$, donc par unicité de la limite q = g(q).

- (b) Si $x \in]q, 1[$, alors $u_1 = g_1(x) = g(x) < x$ puis par récurrence on montre que la suite $(u_n)_n$ est décroissante. Comme précédemment u_n tend vers l'unique point fixe q.
- (c) Si x = q ou x = 1, alors la suite u_n est constante.

En conclusion, si $m \le 1$, alors $\pi = 1$. Si m > 1, alors π est l'unique point fixe de g sur]0,1[.

6. (a) On sait que $g(s) = e^{(t-1)}$ pour tout $s \in [-1,1]$. Lorsque n tend vers $+\infty$, la suite $(u_{n+1})_{n \in \mathbb{N}}$ tend vers q, $(u_n)_{n \in \mathbb{N}}$ tend aussi vers q. La fonction g étant continue en q, $(g(u_n))_{n \in \mathbb{N}}$ tend vers g(q). Or $u_{n+1} = g(g_n)$,

donc par unicité de la limite q=f(q). Donc, d'après ce qui précède π , limite d'extinction est l'unique point fixe de g.

$$\pi = g(\pi).$$

(b) On a $m = g'(1) = \lambda$. Donc deux cas sont possibles :

•
$$\lambda \leq 1$$
.

Posons, pour tout $s \in [0,1]$, $\varphi(s) = g(s) - s$. $\forall s \in [0,1]$, $\varphi(s) = g(s) - s = \mathrm{e}^{\lambda(s-1)} - s$, $\varphi'(s) = \lambda e^{\lambda(s-1)} - 1$. $\forall s \in [0,1[$, s-1 < 0 donc $e^{\lambda(s-1)} < 1$, donc $\lambda e^{\lambda(s-1)} < \lambda \le 1$ et $\varphi' < 0$ sur [0,1[.

s	0 1
$\varphi'(s)$	_
	$e^{-\lambda}$
φ	0 0

 φ est strictement décroissante de [0,1] sur $[0,e^{-\lambda}]$. Le seul zéro de φ est 1. Or les zéros de φ sont les point fixes de g, donc nécessairement $\pi=1$. La probabilité d'extinction est donc 1.

$\bullet \lambda > 1.$

 $\forall s \in [0,1], \ \varphi(s) = g(s) - s = e^{\lambda(s-1)} - s, \ \varphi'(t) = \lambda e^{\lambda(s-1)} - 1 \ \text{et} \ \varphi''(s) = \lambda^2 e^{\lambda(s-1)} > 0. \ \varphi' \ \text{est continue,}$ strictement croissante sur [0,1] dans $J = [\lambda e^{-\lambda} - 1, \lambda - 1]$ donc réalise une bijection entre ces deux intervalles.

On sait que $\ln \lambda < \lambda^1$, donc $\lambda < e^{\lambda}$ et $\lambda e^{-\lambda} - 1 < 0$.

Comme $\lambda - 1 > 0$, 0 est élément de J. Il existe donc un unique $\beta \in]0,1[$ tel que $\varphi'(\beta) = 0$. φ' est négative sur $[0,\beta]$ et positive sur $[\beta,1]$.

s	0	α	β	1
$\varphi'(s)$	$\lambda e^{-\lambda} - 1 < 0$	_	0	+
	$e^{-\lambda}$			0
φ		0 \	/	

 φ est strictement décroissante sur $[0,\beta]$ et strictement croissante sur $[\beta,1]$. $\varphi(1)$ étant égal à 0, nécessairement $\varphi(\beta)<0$. La restriction de φ à $[0,\beta]$ réalise une bijection entre $[0,\beta]$ et $[\varphi(\beta),e^{-\lambda}]$. Il existe donc un réel unique $\alpha\in]0,\beta[$ tel que $\varphi(\alpha)=0$. Or $\varphi(\alpha)=0$ équivaut à $g(\alpha)=\alpha$.

Donc il existe un unique $\alpha \in]0,1[$ tel que $g(\alpha)=\alpha$. g est continue strictement croissante de $[0,\alpha]$ dans $[e^{-\lambda},\alpha]\subset [0,\alpha]$. Le segment $[0,\alpha]$ est stable par g. Comme $u_0=0$, on montre facilement par récurrence que $\forall n\in\mathbb{N},\,u_n\in [0,\alpha]$. La limite de $(u_n)_{n\in\mathbb{N}}$ est donc élément de $[0,\alpha]$. Or on a vu que la limite de $(u_n)_{n\in\mathbb{N}}$ est un point fixe de g. Le seul point fixe de g dans ce segment est g, donc la suite g tend vers g et par conséquent g a. La probabilité d'extinction dans ce cas est strictement inférieur à 1.

(c) Pour $\lambda = 1.3$ on obtient $\pi \simeq 0.577$.

^{1.} $\forall x > 1$, $\ln x < x$.

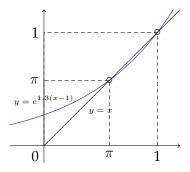


Figure 4 – Probabilité d'extinction π pour une loi de Poisson.

•••••